cURL
curl --request POST \ --url https://api.example.com/v1/refine/embeddings
{ "text": "<string>", "start_index": 123, "end_index": 123, "token_count": 123, "embedding": [ {} ] }
Add vector embeddings to chunks for semantic search and RAG
text
start_index
end_index
token_count
embedding
from chonkie.cloud import TokenChunker, EmbeddingsRefinery chunker = TokenChunker(chunk_size=512) chunks = chunker.chunk("Your text here...") refinery = EmbeddingsRefinery( embedding_model="minishlab/potion-retrieval-32M" ) refined_chunks = refinery.refine(chunks)
Was this page helpful?